Minimal classes of graphs of unbounded clique-width defined by finitely many forbidden induced subgraphs

نویسندگان

  • A. Atminas
  • R. Brignall
  • V. Lozin
  • J. Stacho
چکیده

We discover new hereditary classes of graphs that are minimal (with respect to set inclusion) of unbounded clique-width. The new examples include split permutation graphs and bichain graphs. Each of these classes is characterised by a finite list of minimal forbidden induced subgraphs. These, therefore, disprove a conjecture due to Daligault, Rao and Thomassé from 2010 claiming that all such minimal classes must be defined by infinitely many forbidden induced subgraphs. In the same paper, Daligault, Rao and Thomassé make another conjecture that every hereditary class of unbounded clique-width must contain a labelled infinite antichain. We show that the two example classes we consider here satisfy this conjecture. Indeed, they each contain a canonical labelled infinite antichain, which leads us to propose a stronger conjecture: that every hereditary class of graphs that is minimal of unbounded clique-width contains a canonical labelled infinite antichain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinitely many minimal classes of graphs of unbounded clique-width

The celebrated theorem of Robertson and Seymour states that in the family of minor-closed graph classes, there is a unique minimal class of graphs of unbounded tree-width, namely, the class of planar graphs. In the case of tree-width, the restriction to minor-closed classes is justified by the fact that the tree-width of a graph is never smaller than the tree-width of any of its minors. This, h...

متن کامل

Well-Quasi-Ordering versus Clique-Width: New Results on Bigenic Classes

Daligault, Rao and Thomassé asked whether a hereditary class of graphs well-quasi-ordered by the induced subgraph relation has bounded clique-width. Lozin, Razgon and Zamaraev recently showed that this is not true for classes defined by infinitely many forbidden induced subgraphs. However, in the case of finitely many forbidden induced subgraphs the question remains open and we conjecture that ...

متن کامل

Clique-Width of Graph Classes Defined by Two Forbidden Induced Subgraphs

If a graph has no induced subgraph isomorphic to any graph in a finite family {H1, . . . ,Hp}, it is said to be (H1, . . . ,Hp)-free. The class of H-free graphs has bounded clique-width if and only if H is an induced subgraph of the 4-vertex path P4. We study the (un)boundedness of the clique-width of graph classes defined by two forbidden induced subgraphs H1 and H2. Prior to our study it was ...

متن کامل

Clique-Width for Four-Vertex Forbidden Subgraphs

Clique-width of graphs is a major new concept with respect to efficiency of graph algorithms. The notion of clique-width extends the one of treewidth, since bounded treewidth implies bounded clique-width. We give a complete classification of all graph classes defined by forbidden induced subgraphs of at most four vertices with respect to bounded or unbounded clique-width.

متن کامل

Well - quasi - ordering versus clique - width ∗

Does well-quasi-ordering by induced subgraphs imply bounded clique-width for hereditary classes? This question was asked by Daligault, Rao and Thomassé in [7]. We answer this question negatively by presenting a hereditary class of graphs of unbounded clique-width which is well-quasi-ordered by the induced subgraph relation. We also show that graphs in our class have at most logarithmic clique-w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016